Observed Probability Distrib.
Symmetric Error Curve I
Schrödinger equation
Hemholtz Scalar Wave Equation
Affine space
Div Helmholtz Scalar
Kelvin Functions
Background density enhancement
Density Contrast
Obs. Prob Dist [Plot -1 to 1]
Symmetric Error Curve II
Schodinger Harmonic Osc
Dirichlet-Neumann Field
Omega Frequency
Div Dirichlet-Neumann
Del coordinates
Nonlinear perturbation
Matter density redshift limit
Obs. Prob Dist [Plot 0 to 1]
Standard Error of the Mean
Expansion perturbation
Distribution perturbations
Binomial theorem
{a^x, a^y, a^z}
{xij, yij, zij}
{x^a, y^a, z^a}
Appleton–Hartree equation
Linear approximate [rho(r,t)]
Mean Error
Mean Square Error
Hamilton [H]
Quaternion group
Quaternion
Prob. Distrib. Background Rad.
Photon Redshift Differentials
Observation Range Chance [P]
Observation Range Chance [Pi]
Ground-state singular Hamilton
Helmholtz Harmonic Osc
Spiked Harmonic Osc Potential
Observation Range Chance [Gam]
Esitimate of the parameter mu
Equation of Continuity
Equation of Motion
Barnes-Khinchin G-function
Static Field
Static E Field
Static B Field
Gravitation Potential
Poisson Grav Potential Point
Div Static Space
Div Static E Field
Div Static B Field
Helmholtz Grav Potential Point
Eulerian Lagrangian relation
Variance
Variance [high.accuracy]
Nabla A
Div Lambda Area
Div Area
Nabla B
Div B
Div B partial
Euclidean space
Sphere
Bilogarithmic law
Orthodox bilogarithmic law
Nabla E
Div E
Div E partial
Lagrangian coordinate spec
Eulerian coordinate spec
Polylogarithm
Polylogarithm [alt]
Langurian 1st-order mean
Eulerian 1st-order mean
core-shell capacitance [2D)
core-shell Inductance henry/m
Core-shell Conductance [G]
Langurian stnd dev bijective
Eulerian stnd dev bijective
Polylogarithm
PolyLog[n,z]
Omega Core-shell resistance
Impedance [hiHz K] core-shell
Hi-HZ air dielectric [K ohms]
Langurian variance
Eulerian variance
Lim mu/(sq rt(mu^2+1))
Lim u(u^2+1)^-1/2
Attenuation [conductor nepers]
Attenuation [dielectric nepers
Attenuation [dielectric II]
L'Hospital's Rule
L'Hospital's Rule
Phase constant @lo-loss B
Jordan's totient tuples funct.
Euler's totient function
Harmonic Number[-x]
PolyGamma[-x]
Jordan's totient expanded
Euler's cototient of n
4-M spacetime [M4 structure]
1/x (x^4-x^2-2)
(4.i)N^3 log(-M4)(elog(-M4)+1)
y^-x
1/2 (x^4-x^2-2)
sqrt(i)
sqrt(pi)
Δ^-x +/- y
Δ^x +/- y
Trig functions
(1/2)^y
(1)^y
2^y
Nabla mu(U)
Bernoulli(pi)
Δ^-(1/2) - y
Δ^-(1/2) + y
Inverse trig function
(-1/2)^y
(-1)^y
(-2)^y
Sparse grid [1D]
X^i
Δ^-(1/3) - y
Δ^-(1/3) + y
c(x, y)
Likelyhood [B,X,Y]
Δ^-(1/4) - y
Δ^-(1/4) + y
Polygamma function
Δ^x ± y
Δ^(1/2) - y
Δ^(1/2) + y
Φ[~1/4π (δ^2+λ^2)]
Φ[1/1(δ^2+λ^2)]
Φ[1/11 (δ^2+λ^2)]
Φ[~4π(δ^2+λ^2)]
Haar Wavelet [(psi)(x)]
Expanded Haar Wavelet
Δ^(1/3) - y
Δ^(1/3) + y
sin[πΔ^2+πλ^2] (Dogbowl)
Jugghead Cap
Sombrero [low]
Sombrero [high]
Hat Wavelet [(psi)(x)]
Orthogonal Wavelet [(psi)(x)]
Δ^(1/4) - y
Δ^(1/4) + y
x^(1/y)/(csc(x))
Arccsc Jugghead ["Pointy Cap"]
Arcsec Jugghead ["Mesa"]
Random Field
Ricker wavelet
Mexican hat (Marr wavelet)
(-1 + x)^n
(-1 + x)^n (Plot)
Φ[2(δ^2+λ^2)]
Φ[1/2(δ^2+λ^2)]
Jacobi Zeta [Phi,x]
- i e^(i π n) Ѳ(x)
Alpha [electron] coefficient
Space Charge Boundary
Multiplication Factor
Φ[~π(δ^2+λ^2)]
Φ[~1/π(δ^2+λ^2)]
Vf
Voltage noise power intensity
P(quark hypercharge (Y))
{P, Y}
Negative Potential Energy
Φ[4(δ^2+λ^2)]
Φ[1/4(δ^2+λ^2)]
-x/(Δ^2+λ^2)
(Δ^2+λ^2)^(-x)
Φ[1/5(δ^2+λ^2)]
Φ[1/5(δ^2+λ^2)]
Gamma (|alpha|,1)
Y Distribution [approx. norm]
Stochastic differential eq.
{theta chi, theta chi}
-{theta chi, theta chi}
Φ[6(δ^2+λ^2)]
Φ[1/6(δ^2+λ^2)]
pi (a-1)! x
pi(x-1/3)! y
{{0, 0}
{theta chi, 0}
{0, theta chi}
Φ[7(δ^2+λ^2)]
Φ[1/7(δ^2+λ^2)]
sigma(pi(y-1/3)! x)
phi (pi(x-1/3)! y)
Φ[8(δ^2+λ^2)]
Φ[1/8(δ^2+λ^2)]
((17/20)|[y^x]|)^x^(-1)
Polarization
sqrt((x-y)^2)
sqrt((x-y)^2)/phi(y)
sqrt((x-y)^2) * phi(y)
Φ[9(δ^2+λ^2)]
Φ[1/9(δ^2+λ^2)]
(1-(-1)^(.85) |(y^x))|^(1/x
|[y^x]^x^(-1)|
sqrt((x+y)^2)
sqrt((x-y)^2)/phi(x)
sqrt((x-y)^2) * phi(x)
Φ[10(δ^2+λ^2)]
Φ[1/10 (δ^2+λ^2)]
(x)^(y) e^(ixπ)Θ(x)
-|(1/theta)e^ (x/theta)|
Φ[11(δ^2+λ^2)]
Φ[1/11 (δ^2+λ^2)]
(1/theta) e^(x/theta)
(1/theta) e^(-x/theta)
y^(-1/2) and z^(-1/2)
y^(-1/1) and z^(-1/1)
y^(-2) and z^(-2)
Φ[12(δ^2+λ^2)]
Φ[1/12 (δ^2+λ^2)]
cos(theta) + i sin(theta)
(theta) e^(theta/x)
Φ[13(δ^2+λ^2)]
Φ[1/13 (δ^2+λ^2)]
Hq Hd
Beta(x,y)
(-1/2)^y and (-1/2)^z
(-1/1)^y and (-1/1)^z
(-2)^y and (-2)^z
Φ[14(δ^2+λ^2)]
Φ[1/14 (δ^2+λ^2)]
Hermite ((Xi/2)Phi(Xi/2))
(r)^a
Φ[15(δ^2+λ^2)]
Φ[1/15 (δ^2+λ^2)]
Log[ϵ λ] ϵ λ
{y^x, x^y}, x=-1
{y^x, x^y}, x=0
{y^x, x^y}, x=1
Φ[16(δ^2+λ^2)]
Φ[1/16 (δ^2+λ^2)]
{y^x, x^y}, x=-1/2
{y^x, x^y}, x=1/2
Φ[17(δ^2+λ^2)]
Φ[1/17 (δ^2+λ^2)]
2nd Ord Homogeneous linear dif
Abs((Sqrt[1+mu^2](1+ν)))
Absolute psi tri phi
psi tri phi
(C^3 R)/3
(nu V^2)/2
(C^2 Lambda)/2
Expectation value
Dead 0 Expectation [T=Tau]
Autocovariance infinite band
Angular Frequency Oscillator
Ω(t+gamma) (phi(t))
-(Ω(t+gamma) (phi(t))
Spectral density phase
Neg Spectral density phase
3rd finite field differnce
Fundamental pulling equation
Relative Bandwidth
Angular Freq. Osc. Expanded
Auto covariance Function
Negative Auto covariance
Spectral density restriction
Omega Bandwidth
Ω bandwidth assumption
WolframAlpha
0 Follower(s)
Last update: July 30th, 2019
Various WolframAlpha equations